

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive,
royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos
National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los
Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the
viewpoint of a publication or guarantee its technical correctness.

FORM 836 (10/96)

LA-UR-02-4850
Approved for public release;
distribution is unlimited.

Title: Performance Evaluation of an EV7 AlphaServer Machine

Author(s):

Darren J. Kerbyson
Adolfy Hoisie
Scott Pakin
Fabrizio Petrini
Harvey J. Wasserman

Submitted to:

Los Alamos Computer Science Institute Symposium (LACSI),
Santa Fe, October 2002.

 1

Performance Evaluation of an EV7 AlphaServer Machine.

Darren Kerbyson, Adolfy Hoisie, Scott Pakin, Fabrizio Petrini, Harvey Wasserman
Los Alamos National Laboratory,

CCS-3 Modeling, Algorithms and Informatics Group,
Parallel Architectures and Performance Team

Los Alamos, NM 87545
Email: {djk,hoisie,pakin,fabrizio,hjw}@lanl.gov

Abstract

In this paper we detail the performance of a new Alphaserver machine consisting
of 16 Alpha EV7 CPUs. This processor is based on the Alpha EV68 processor
core as used in the existing Alphaserver ES45 that has been used to build tera-
scale systems at Los Alamos and at Pittsburgh. The EV68 processor core is
supplemented with an additional six-way router circuitry which enables a 2-D
inter-processor torus network to be constructed as well as direct connections to
I/O and local memory. A performance evaluation of this machine is reported here
which considers memory hierarchy, intra-node MPI communication, and full
application performance. Comparisons are also made to existing Alphaserver
machines. It is clear from this analysis that this machine achieves an excellent
main memory bandwidth of over 4 GB/s. This has a positive impact on
application performance on larger problem sizes in comparison to a similar speed
EV68 processor.

1. Introduction

This paper details a performance evaluation of a state-of-the-art Alphaserver machine. It
represents one of the next generation Alphaserver machines which are designed to scale up to 64
processors within a node. The most significant changes relative to the current Compaq ES40 [1]
and ES45 systems include: the upgrade to the EV7 CPU module, PCI-X I/O slots, and a NUMA
memory architecture [3].

The EV7 CPU uses the same EV68 core as in the Alphaserver ES45 but also incorporates two
on-chip Direct Rambus (RDRAM) memory controllers and a 1.75-MB L2 cache on the chip. The
instruction set architecture is identical to that of the EV68; a maximum of two floating-point
operations can be executed each cycle, so a 1.2-GHz CPU has a peak theoretical processing rate
of 2.4-GFLOPS. However, certain improvements to the core have been made; for example, the
EV7 CPU can accommodate 16 concurrent outstanding cache misses (versus 8 for the EV68).

The L1 and L2 cache latencies are the same as they were in the EV68: with an expected 2 cycle
latency to the L1 and 12-cycle latency to the L2. The EV7's L2 cache is seven-way set
associative and can transfer data to the CPU at 16 bytes/cycle (up to 19.2 GB/s at 1.2-GHz). Note
that the previous EV68 L2 cache was much larger (up to 16 MB) but was off-chip and had a
maximum transfer rate to the CPU of only 5.3 GB/s. The two EV7 on-chip RDRAM memory
controllers support a maximum memory-to-L2 transfer rate of 12 GB/s; this is to be compared
with only 2.6 GB/s maximum in the EV68.

 2

The EV7 chip also includes a router with a total of six connections. Four connections go to
neighboring processors arranged within a node as a 2-D torus topology. These are capable of
running at 6.4-GB/s each. One is an I/O port and the remaining one connects to the local
processor resources - the local processor core and its two memory controllers. (Note: this router
is similar to the router chip in the SGI Origin2000, the main difference being that in the EV7 it is
on-chip rather than as a separate ASIC.) This arrangement is shown in Figure 1.

EV7 M

I/O

EV7 M

I/O

EV7 M

I/O

EV7 M

I/O

EV7 M

I/O

EV7 M

I/O

EV7 M

I/O

EV7 M

I/O

EV7 M

I/O

EV7 M

I/O

EV7 M

I/O

EV7 M

I/O

EV7 M

I/O

EV7 M

I/O

EV7 M

I/O

EV7 M

I/O
0

1

2

8

7

6

5

4

3

15

14

13

12

11

10

9

Figure 1 – an example 16 processor EV7 machine indicating processor number ordering

A node is composed of between 1 and 64 EV7 CPUs interconnected via the on-chip routers. The
resulting system is a ccNUMA (cache coherent, non-uniform memory architecture) design in
which any CPU can access all of the memory in the node but in which the memory access time
differs depending on where the data are located (also similar to the SGI Origin2000). The latency
to local memory was measured at 83ns. Each reference to non-local memory pays this same 83ns
penalty, plus about 30ns of overhead getting in and out of the network, plus about 18ns per hop
of mostly wire and router delay - a total delay of about 140ns to read the memory on a node
that's one hop away. Each additional hop adds another 35-36ns of delay on average.

Therefore, the worst-case latency on a 64-CPU node is roughly 390ns (about five times worse
than the best-case). The average memory latency across such a machine is approximately 260ns,
which compares favorably with the (uniform) memory latency of 170ns on an Alpha (EV68)
ES45 4-processor system. Smaller nodes will have smaller average latencies (e.g., about 225ns
on a 32-processor system).

The EV7 machine analyzed here consisted of a single node containing 16 processors with a clock
speed of 1.2-GHz. Three sets of tests were used to analyze its performance. These are:

(1) memory hierarchy performance micro-benchmarks,
(2) intra-node MPI communication kernels, and
(3) full-application codes.

 3

The performance of the memory hierarchy is detailed in Section 2, the performance of the intra-
node MPI communication is detailed in Section 3, and the performance of several full
application codes are detailed in Section 4. A comparison is made between the measured
performance on this machine to that measured on existing Alphaserver machines in Section 5.

2. Memory Hierarchy Performance

The performance of the memory hierarchy is analyzed here both in terms of the latency of the
various memory levels in the machine, and also the bandwidth possible to local processor
memory and to remote memory within a node.

2.1 Memory Latency

The memory latency was measured by performing a read from a vector in which successive
reads are from elements a cache-line length apart. This guarantees that each memory access will
exhibit a latency cost as no spatial cache-reuse will occur. By increasing the size of the vector,
the latency to different parts of the memory hierarchy can be observed. In addition the memory
vector can be placed on a pre-determined PE (Processing Element) and read from on a further
pre-determined PE – thus latency to memory on remote processors can also be observed.

Memory Latency to remote PEs

0

50

100

150

200

250

300

4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m 16m 32m 64m
Data Size (Bytes)

L
at

en
cy

 (
cy

cl
es

)

2
3
4
5
6
7
8
9
10
11
13
14
15

Figure 2 – Memory Latency to Remote Processors from Processor 12.

Figure 2 indicates the latency observed when the memory read is performed on processor 12 and
memory is placed on processors 2-15 respectively. The latency for remote memory access can be
seen on the larger data vector sizes. On smaller vector sizes, the data will reside in the local
processor cache and thus appear the same for all remote processors.

The latency increases as the distance (processor hops increases). It also depends on the route
taken, for instance two processors are contained on a single board from a vertical processor pair
in within the node, and has less latency than to a processor on a different board. A summary of

 4

the latency on the 64Mbytes data vector size is indicated in Figure 3 below. The processor hop
distance is shown in Figure 4 for this study (distance from processor 12). The processor ID
layout is as shown in Figure 1.

290 258 211 259

260 232 181 259

212 178 106 172

258 212 162 202

Figure 3 –memory latencies (clock cycles)
for processor 12

4 3 2 3

3 2 1 2

2 1 0 1

3 2 1 2

Figure 4 – distance (hops) from processor
12

2.2 Memory Bandwidth

Cachebench [5] was used to measure the memory hierarchy bandwidth performance within a
single node. Two sets of tests were performed. The first test measured the peak memory
performance on a single processor for: read, write, read-modify-write, memset, and memcpy.
These are shown in Figures 5 and 6. All results are measured for a vector of varying size.

A second test measured the bandwidth performance on a single processor while a number of
other processors within the node performed background reads each to their local memory to
measures the effective bandwidth in the presence of possible contention.

Cachebench - Double (EV7 1.2GHz)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

100 1000 10000 100000 1000000 10000000

Vector Length (Bytes)

B
an

d
w

id
th

 (
G

B
/s

)

Read

Write

RMW

Figure 5 – Achievable peak memory bandwidths (read, write, Read-Modify-Write).

 5

Cachebench - Double (EV7 1.2GHz)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

100 1000 10000 100000 1000000 10000000

Vector Length (Bytes)

B
an

d
w

id
th

 (
G

B
/s

)
Memset

Memcpy

Figure 6 – Achievable peak memory bandwidths (memset, memcpy).

In addition a vector of size larger than the local processor memory was allocated and a read
operation performed. This test results in memory accesses to all the available local memory
along with a proportion of remote memory. The bandwidth obtained is shown in Figure 7. Note
that this test was performed only on an 800-MHz EV7 machine.

Cachebench - Double (EV7 800MHz)

0

1

2

3

4

5

6

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 1E+09 1E+10

Vector Length (Bytes)

B
an

d
w

id
th

 (
G

B
/s

)

Read

Figure 7 – Achievable peak memory bandwidth (read) illustrating remote memory access on

large vector sizes.

 6

The memory bandwidth observed for the EV7 machine is very good and is summarized in Table
1. Note that the size of each level of the memory hierarchy can be seen in Figure 7 by the step
changes in the memory bandwidth performance.

 Peak bandwidth
(GB/s)

Latency
(cycles)

L1 (64KB) 7.77 2

L2 (1.75MB) 6.20 12

Main memory (2GB) 4.60 106

Remote memory ~3.60 162-290

Table 1 – Memory performance summary.

The results show that there is only less than a factor of 2 bandwidth reduction between L1 and
main memory illustrating a major strength of this machine.

It is expected that the performance of memset corresponds to that of the write performance, and
that the performance of memcpy corresponds to that of the read-modify-write performance. As
can be seen from Figures 5 and 6, they are indeed similar for L1 cache performance but both
under-perform on main memory indicating a better implementation may be possible.

The impact of having many background processors performance memory reads did not have an
impact on an individual processors memory performance. This is unlike many of the existing
smaller SMP nodes such as the Alphaserver ES45 which can be effected by a reduction in
bandwidth by a factor of 2 due to memory bus contention. This data has not been included here.

3. Intra-node Communication Performance

The achievable intra-node communication performance was measured using a number of MPI
based tests. These included:

• Ping-pong message performance between two adjacent processors. This was measured
for both uni-directional and bi-directional message traffic, recording both message
latency and bandwidth.

• Message latency and bandwidth between a single processor and all other processors in
the node to indicate the performance of between non-adjacent processors.

• Hot-spot communication performance – the achieved communication bandwidth when
more than one processor communicates to a single processor.

• Barrier performance – latency for MPI barrier

• Broadcast performance – achieved bandwidth for MPI broadcast

 7

3.1 MPI Communication Performance

The performance of both uni-directional and bi-directional MPI communication between two
adjacent PEs using a ping-pong test is shown in Figures 8 and 9. Figure 8 shows the duration
(latency) and Figure 9 shows the achieved bandwidth for messages of size between 1 and
1,000,000 bytes.

MPI Latency

1

10

100

1,000

10,000

1 10 100 1000 10000 100000 1000000

Message Size (bytes)

L
at

en
cy

 (
µ

s)

Uni-directional

Bi-directional

Figure 8 – MPI message latency between two adjacent PEs.

MPI Bandwidth

0

1

10

100

1,000

10,000

1 10 100 1000 10000 100000 1000000

Message Size (bytes)

B
an

d
w

id
th

 (
M

B
/s

)

Uni-directional

Bi-directional

Figure 9 – MPI ping-pong message bandwidth between two adjacent PEs.

 8

The achieved latency of a small message was 1.7µs for a uni-directional message and 2.2µs for
bi-directional messages. The ping-pong bandwidth on a message of size 1,000,000 bytes was
1.08GB/s for a uni-directional message and 485MB/s for bi-directional messages. Note that the
bi-directional bandwidth is quoted for the achieved bandwidth for each direction in the
communication. The bi-directional bandwidth in each direction is just under half of the uni-
directional bandwidth.

3.2 Point to Point Communication Performance within a node

The performance of a uni-directional communication using a Ping-Pong test was recorded for all
PEs within a node communicating with PE 0. The latency obtained (for a 0 sized message) and
the bandwidth achieved on a message of size 1MB are shown in Figures 10 and 11 respectively.

- 1.6 1.8 2.0

1.3 2.3 2.1 2.0

2.2 2.4 2.4 2.5

2.3 2.4 2.5 2.4

Figure 10 – MPI latency (µs).

- 1.14 1.12 1.14

1.14 1.13 1.13 1.13

1.14 1.13 1.11 1.13

1.13 1.12 1.12 1.13

Figure 11 –MPI bandwidth (GB/s).

Both figures show a 4x4 processor map of the PEs in a node. The latency increases as the
distance (in processor hops) increases. In fact 2 processors are engineered on the same board in
the machine. Processors on the same board have a slightly lower latency than those that are not.
In the processor maps shown in Figures 10 and 11 each vertical pair of processors reside on the
same board, thus the latency between PE 0 (top-left) and PE 1 (second from top on left) is
smaller than the latency between PE 0 and PE 2 (top, second from left). Also note that the PEs
within a node are connected in a 2-D torus topology and thus the PE (lower-right) is only 2-hops
distant from PE 0.

The bandwidth between PE 0 and any other PE is approximately a constant at 1.13GB/s. The
processor ID layout is as shown in Figure 1, and the distance in hops for this experiment is
shown in Figure 12.

0 1 2 1

1 2 3 2

2 3 4 3

1 2 3 2

Figure 12 – distance (hops) from processor 0.

 9

3.3 Hot-spot Communication Performance

The achieved bandwidth performance under the hot-spot communication traffic is shown in
Figure 13. Hot-spot tests the situation when 1 or more PEs simultaneously communicates to a
single PE in a repetitive mode. In the case shown in Figure 13 one or more PEs sent a message of
size 256KB to processor 0.

The achievable bandwidth on this test actually increases as more processors perform the
simultaneous communication approaching a maximum of just over 1.9GB/s. This indicates that
the available bandwidth exceeds that which can be used by a single pair of processors.

Intra-Node Hot-Spot Bandwidth

0

500

1,000

1,500

2,000

2,500

0 4 8 12 16

PEs

B
an

d
w

id
th

 (
M

B
/s

)

Figure 13 – Achievable bandwidth under the Hot-Spot traffic

3.4 MPI Barrier Latency and Broadcast Bandwidth.

The performance of MPI barrier is shown in Figure 14. The in-node barrier takes 11.2µs on the
1.2-GHz machine. This is actually larger than a Quadrics QsNet based barrier which takes 7µs
for an internode barrier on 512 nodes [6]. The performance of MPI broadcast is shown in Figure
15. The achievable bandwidth decrease as more processors are involved in the broadcast. This is
due to the broadcast operation relying on messages to propagate through the 2D torus topology.
The Quadrics QsNet uses additional hardware support to improve its barrier and broadcast
performance. The bandwidth decreases from 1.01GB/s on 2 PEs down to 300MB/s when using
all 16 PEs in the EV7 machine.

 10

MPI Barrier Latency

0

2

4

6

8

10

12

0 4 8 12 16

PEs

L
at

en
cy

 (
µ

s)
MPI Broadcast Bandwidth

0

200

400

600

800

1,000

1,200

0 4 8 12 16

PEs

B
an

d
w

id
th

 (
M

B
/s

)

Figure 14 – MPI barrier performance Figure 15 – MPI broadcast performance.

4. Application Performance

The performance of several applications of interest to Los Alamos National Laboratory were
measured on the EV7 Alphaserver machine. Performance is detailed here for SAGE, MCNP, and
SWEEP3D. SAGE is a multidimensional multi-material hydrodynamics code with adaptive
mesh refinement [7]. MCNP is a general purpose Monte-Carlo N-Particle that can be used for
neutron, photon, electron, or coupled transport [4]. SWEEP3D is a time independent, Cartesian-
grid, single-group, discrete ordinates deterministic particle transport code [2]. Each application
was executed in a number of different configurations as described below.

4.1 SAGE

The performance of SAGE was examined in two different studies. The first considers a sequential test
whilst varying the size of the spatial grid in terms of the number of cells processed in a single iteration of
the code. This is to examine the impact of the memory hierarchy as it is possible for small spatial grids to
be L2 cache resident whereas larger grids are not. The second study considers a single spatial grid size
whilst varying the number of processors used in a weak scaling study (i.e. keeping the number of cells per
processor at a constant). Both studies are described below.

i) SAGE – Cells per PE scaling

This is a sequential test of SAGE whilst scaling the number of cells in the spatial grid. The number of
cells was varied from 143 to 583. Note that SAGE uses a 3D spatial cube by default – hence the number of
cells were varied as a cubic power. The result of this scaling is shown in Figure 16 using the number of
cells that can be processed in one second (CC/s) as a metric. Ideally this should be a constant for all
problem sizes.

 11

SAGE - 1 CPU (timing.Input)

0

10000

20000

30000

40000

50000

60000

0 25000 50000 75000 100000 125000 150000 175000 200000
cells

cc
/s

Ev7 (1.2GHz)

Figure 16 – Sequential Performance of SAGE when varying the spatial grid size.

The performance degrades as the number of cells increases. This is expected due to the limited
capacity of the cache. On the smaller problem sizes a large utilization of the L2 cache is possible.
On the larger problem sizes very little re-use of L2 cache is possible and hence resulting in a
large utilization of main memory.

The performance levels off above 125,000 cells (when main memory is mainly utilized). The
dips in performance are due to the number of cells being close to or an exact function of 2 (for
instance 4096, and 32768). Having such a number of cells results in poor cache performance
resulting from ping-pong interference causing a higher degree of cache misses.

The performance decrease over the range of cell numbers is only 40%. This is a small decrease
and is attributed to the good main memory bandwidth of the EV7 machine.

ii) SAGE - Scalability

A scalability test of SAGE was performed on between 1 and 16 processors contained within the
EV7 node. The number of cells per processor was set at a constant of 13,500 and thus resulted in
a weak-scaling study.

Results are shown in Figure 17 using the number of cells processed in one second per processor
(CC/s/pe) metric. The CC/s/pe should ideally be constant but decreases due to parallel overhead.

 12

SAGE (TimingMPI.input)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 4 8 12 16
PEs

C
C

/s
/p

e

Figure 17 – Scaling behavior of SAGE on the EV7 machine (in node) using the CC/s/pe metric

It can be seen from Figure 17 that the performance decrease up to 16 processors is small (from
42,500 on a single processor down to 38,200 on 16 processors). This represents a high 90%
efficiency on 16 processors. The unexpected performance on 10 processors can most likely be
attributed to a poorer cache utilization that can occur from the only approximate weak scaling
behavior of SAGE.

4.2 MCNP

The performance of MCNP is examined here in a strong scaling study. The number of particles
that are processed in each cycle was set at a constant and divided up across the number of slaves
available for processing. The geometry in which the particles move was replicated across the
processors being used. The processing of each particle within a cycle is independent and thus
communication occurs at the start and end of a cycle between all slaves and a master processor.
The number of cycles, C, and particle histories per cycle, nps, was set to be (C=1010, nps=1,000)
and (C=210, nps=10,000) in two separate scalability tests.

The time per particle history while varying the number of slave processors used is shown in
Figure 18. This is effectively the grind time of this code. Note that the number of processors used
in each case is actually the number of slaves + 1 (i.e. plus a master processor who accumulates
results).

 13

MCNP Ev7 (CritExp)

0

0.2

0.4

0.6

0.8

1

1.2

3 5 7 9 11 13 15

#Slaves

T
im

e
p

er
 P

ar
ti

cl
e

H
is

to
ry

 (
m

s)

C=1010, nps=1000

C=210, nps=10000

Figure 18 – Time per particle history in MCNP using the critexp input deck on the EV7 machine

The code is subject to a high degree of communication on the smaller problem (C=1010,
nps=1,000) resulting in a low efficiency when using all 15 slaves (<60%).

The scalability of the larger problem (C=210, nps=10,000) is expected to be much better due to a
decrease in the degree of communication. The time per particle history when using 3 slave
processors on the larger problem is ~0.55ms on the EV7 machine. All configurations of the
larger problem sizes were not run, but the few measurements made indicate a better scaling
behavior than the smaller problem.

4.3 Sweep3D

The performance of Sweep3D was also measured on the EV7 machine. A problem of size 50-
cubed with 1-k plane per block and 1 angle per block was run. The total run time was measured
in a weak scaling analysis. Observed parallel efficiency on 16 processors was about 90% on the
EV7 machine. The single-processor time on EV7 was found to 30% faster than the single-
processor time on an EV68 (1GHz) ES45 processor.

 14

5. Comparative Performance

The results of the performance tests measured on the EV7 machine are compared with the
performance obtained on current Alpha-systems in this section. The comparisons are made on a
like for like basis unless stated. A comparison of performance is shown in Table 2. Currently no
MPI performance is available for the 1.25GHz ES45, and no inter-node MPI performance is
available on the EV7.

Note that the benchmarked EV7 system was a prototype, and that the current performance may
not reflect the achieved level of performance possible on production systems after system and
application tuning.

 ES40 [1]
(EV68)

ES45
(EV68)

ES45
(EV68)

EV7

System Characteristics
Clock 833 MHz 1 GHz 1.25 GHz 1.2 GHz
Node size (CPUs) 4 4 4 16
L1 Cache 64 KB 64 KB 64 KB 64 KB
L2 Cache 8 MB 8 MB 16 MB 1.75 MB

Memory Performance
Latency (cycles): L1
 L2
 Main
 Remote Memory

2
12

168
-

2
19

170
-

-
-
-
-

2
12

106
162-2901

Read Bandwidth (GB/s): L1
 L2
 Main
 Remote Memory

4.93
3.972
1.702

-

6.47
6.072
2.272

-

7.89
7.522
2.272

-

7.77
6.20
4.58
3.60

MPI performance
Intra-Node (Point to Point)
Uni-directional: Latency (µs)
 Bandwidth (MB/s)
Bi-directional: Latency (µs)
 Bandwidth (MB/s)

6.2
695
12.7
317

4.9
792
8.9
379

-
-
-
-

1.7

1,080
2.2
485

Inter-Node3 (QsNet – Elan3)
Uni-directional: Latency (µs)
 Bandwidth (MB/s)
Bi-directional: Latency (µs)
 Bandwidth (MB/s)

5.6
199
9.8
79

4.5
293
7.4
132

-
-
-
-

-
-
-
-

Table 2 – Comparison of various performance characteristics of Alpha machines.

 15

Notes on Table 2:

1 – Remote memory latency on the EV7 varies on the distance (PE hops) between data
locality and PE accessing data.

2 – The memory bandwidth on the ES40 and ES45 decrease depending on the number of PEs
simultaneously accessing memory (a decrease up to a factor of 2 is possible). No
decrease occurs on the EV7.

3 – Peak values for inter-node Latency and Bandwidths are quoted. These can decrease
depending on distance between nodes, and physical lengths of wires used.

The performance comparison show a number of significant performance improvements of the
EV7 1.2-GHz machine in comparison to the existing EV68 ES45 1-GHz machine. These can be
summarized as:

• the main memory bandwidth is a factor of 2 better
• in-node MPI latency is almost a factor of 3 better,
• in-node MPI bandwidth is 30% better

6. Summary

The performance evaluation of the EV7 Alphaserver has shown that the machine has an excellent
main memory bandwidth which is almost a factor of two greater than existing systems. In
addition, there is only a factor of 2 decrease in the memory read bandwidth between L1 cache at
7.77GB/s and main memory at 4.6GB/s. The bandwidth from remote memory within the node is
also high at approximately 3.6GB/s. The small L2 cache (1.75MB) will have a negative impact
on application performance on larger problem sizes.

The MPI communication performance compares well with current systems - point-to-point
message latency between adjacent processors is low at 1.7µs and bandwidth between adjacent
processors is just over 1GB/s. However, the latency is high when compared to remote memory
latency (1.7µs vs. 135-240ns), and the bandwidth is low when compared to peak remote memory
bandwidth (1GB/s vs. 3.6GB/s).

The MPI latency increases as the distance between processors increases with the maximum being
2.4µs. The bandwidth between any two processors is a constant (at just over 1GB/s). However,
the barrier latency was 11.2µs for all 16 processors – this seems large when compared with
clusters interconnected with Quadrics QsNet [6]. The broadcast bandwidth also decreases as the
number of processors increase due to a lack of hardware support – the bandwidth for all 16
processors was 300MB/s.

The application performance showed that in-node scaling was good resulting in high efficiencies
on most codes (90% at 16 processors for SAGE, and SWEEP). On a detailed analysis of scaling
the spatial grid in SAGE, the performance decrease from running a small problem (cache bound)
to a large problem (main memory bound) was only 24%.

 16

Due to the excellent main memory bus bandwidth, a higher performance should be achievable on
the EV7 machine in comparison to a similarly clocked existing Alphaserver ES45.

Acknowledgements

The authors which to thank Richard Foster, Niraj Srivastava, Zarka Cvetanovic, and Ed Benson
for access to the EV7 machine, and technical discussions on the performance of the Alphaserver
systems.

References

[1] Z. Cvetanovic, R.E. Kessler, “Performance Analysis of the Alpha 21264-based Compaq

ES40 System”, Procc. 27th ISCA, Vancouver, June 2000, pp. 192-202.

[2] K.R. Koch, R.S. Baker, R.E. Alcouffe, “A Parallel Algorithm for 3D Sn Transport

Sweeps”, LA-CP-92-406, Los Alamos National Laboratory, 1992.

[3] K. Krewell, “Alpha EV7 Processor: A High Performance Tradition Continues”,

Microprocessor Report, San Jose, April 2002.

[4] G. McKinney, “A Practical Guide to Using MCNP with PVM”, Trans. Am. Nucl. Soc. 71,

397, 1994

[5] P. Mucci, K. London, “Low Level Architectural Characterization Benchmarks for Parallel

Computers”, Technical Report UT-CS-98-394, University of Tennessee, 1998.

[6] F. Petrini, W.C. Feng, A. Hoisie, S. Coll, E. Frachtenberg, “The Quadrics Network: High-

Performance Clustering Technology”, IEEE Micro, 22(1), 2002, pp. 46-57.

[7] R. Weaver, Major 3-D Parallel Simulations, BITS -Computing and communication news,

Los Alamos National Laboratory, June/July, 1999, 9-11,
http://www.lanl.gov/orgs/cic/cic6/bits/99june_julybits/opener.html

